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The goal of this note is to derive and understand the formula

∇θEx∼N(0,1) [f(θ + σx)] = Ex∼N(0,1)

[x
σ
f(θ + σx)

]
. (0.1)

The derivation involves change of variables, known in this context as the repa-
rameterization trick, followed by the application of the likelihood ratio trick and
a subsequent inverse change of variables.

1 Reparameterization trick
One can derive the reparameterization trick

Ex∼N(0,1) [f(θ + σx)] = Ey∼N(θ,σ2) [f(y)] (1.1)

via the change of variables y = θ + σx with dy = σdx as∫
f(θ + σx)N(x|0, 1) dx =

∫
f(y)N

(
y − θ

σ
|0, 1

)
dy

σ
=

∫
f(y)σN(y|θ, σ2)

dy

σ
.

One could also derive Formula (1.1) intuitively, since shifting a function is equiv-
alent to shifting a Gaussian in the opposite direction.

2 Smoothing operator
We can compactly rephrase (1.1) using the smoothing operator S which acts on
functions f by convolving with a Gaussian kernel as

Sfθ = Sθf. (2.1)

The dependence on the parameters θ can be shifted from the function to the
kernel.
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3 Derivative operator
If we want to compute a gradient of a smoothed function, we can push the
gradient inside the expectation

∇θEx∼N(0,1) [f(θ + σx)] = Ex∼N(0,1) [∇θf(θ + σx)] .

A compact notation for this is

D [Sfθ] = S [Dfθ] , (3.1)

where D is the derivative operator. As we see, smoothing and differentiation
commute.

4 Derivative of smoothing
Formula (3.1) allows us to compute the derivative D [Sfθ] of a smoothed function
Sfθ by smoothing the derivative Dfθ of the initial function fθ. Somewhat
surprisingly, shifting the dependence on the parameters from the function f to
the smoothing operator S using (2.1), we can compute D [Sfθ] even if we can’t
differentiate fθ,

D [Sfθ] = D [Sθf ] .

We have to differentiate the smoothing operator instead. This is reminiscent of
Heisenberg vs Schrödinger picture in quantum mechanics.

5 Likelihood ratio trick
The likelihood ratio trick

∇θEy∼N(θ,σ2) [f(y)] = Ey∼N(θ,σ2)

[
∇θ lnN(y|θ, σ2)f(y)

]
allows us to switch the order of differentiation and parameterized smoothing

D [Sθf ] = Sθ [D lnNθf ] . (5.1)

However, D and Sθ do not commute this time, since we are getting an extra
factor lnNθ in front of f .

6 Differentiation vs multiplication
Shifting the dependence on θ in (5.1) back from S to f , we obtain

Sθ [fD lnNθ] = S
[
fθ

x

σ

]
.

If you followed the whole chain of reasoning, you now see the following remark-
able identity

S [Dfθ] = S
[x
σ
fθ

]
. (6.1)
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In words, it means that differentiation is equivalent to multiplication by x
σ when

followed by smoothing. The particular form of the multiplicative factor follows
from using Gaussian noise. Other formulas in this note do not rely on any
particular choice of the sampling distribution.

7 Conclusion
Finally, switching the order of smoothing and differentiation in the left-hand side
of (6.1), which is allowed by (3.1), we obtain (0.1) advertised in the beginning,

D [Sfθ] = S
[x
σ
fθ

]
. (7.1)

Differentiation of a smoothed function Sfθ is equivalent to smoothing of a sur-
rogate function x

σfθ.

8 Future work
The most symmetric formulation seems to be (6.1). Differentiation can be
replaced by multiplication inside smoothing. This sounds reminiscent of the
Fourier transform. Is there any relation? Another question is how reliable
this formula is in practice. On the left, one averages values of the derivative,
whereas on the right, on averages function values with some weights. It sounds
like finite-difference approximation. Is it true then that the left-hand side is
more precise in practice, given a finite sample size?
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