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In the Lagrangian formalism, the action S[q] =
∫
L(q, q̇)dt with the La-

grangian L(q, q̇) = K(q̇)−Π(q) is considered to be a functional of the trajectory
q(t), whereas in the Hamiltonian formalism, the action A[q, p] =

∫
H(q, p)dt

with the Hamiltonian H(q, p) = K(p) + Π(q) is a functional of the primal vari-
ables q(t) and dual variables p(t). When we want to control a system, we usually
come up with a cost function—which is a kind of Hamiltonian for the system
comprised of the plant and the controller—and then we optimize it with respect
to controls. The question is: Why do we always use plus in the definition of
the cost? The answer is that both L and H are just convenience functions for
deriving the equations of motion. Once the kinetic and potential energies are
chosen, one can derive the resulting equations of motion. The cost function in
a control problem, on the other hand, is something different, since it tries to
impose a certain trajectory by changing or modulating the system dynamics.
For example, we can set the length of a pendulum and observe how fast it oscil-
lates. Then we may change the length and observe it again. In both cases, the
Hamiltonian gives us the equations of motion specific to the choice of the length.
However, it tells us nothing as to what length we should prefer. This knowledge
should come from outside, i.e., from a cost function. Indeed, you might say that
you want to have a pendulum that swings once per minute. Then you get an
optimization problem over the control parameter l that modulates the dynam-
ics of the system. The Hamiltonian, however, is indifferent to the cost function
since it treats l as a constant parameter and returns the equations of motion
for whatever l you specify. Thus, although superficially related concepts of the
system energy and cost are actually two different things.

1 Lagrangian and Hamiltonian formalisms
The Hamiltonian principle of least action says that a physical system follows a
stationary trajectory q(t) of the action

S[q] =

∫
L(q, q̇)dt (1.1)
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with the Lagrangian L(q, q̇) = K(q̇)−Π(q). For simplicity the system is assumed
time invariant. The equations of motion follow from the necessary condition for
optimality

d

dt
Lq̇ = Lq.

Note that action S in (1.1) is a function of q(t) only. Although q̇ appears in
the right-hand side, it is not an independent variable. For example, for the
harmonic oscillator we get

L(q) =
q̇2

2
− q2

2
⇒ q̈ = −q.

If, however, we reduce the second order system of differential equations to the
first order system by the standard trick of treating Lq̇ as an independent variable
p, we arrive at the Hamiltonian

H(q, p) =
p2

2
+

q2

2
.

The Hamiltonian allows one to derive the equations of motion by equating its
differential to zero,

dH = Hpdp+Hqdq = 0. (1.2)

From here we obtain the famous equations

q̇ = Hp,

ṗ = −Hq,

which can also be stated in vector form as

˙[q
p

]
=

[
0 1
−1 0

] [
Hq

Hp

]
.

One can also cook up an action-like integral with the Hamiltonian inside

A[q, p] =

∫
H(q, p)dt,

but since we are treating q and p as independent variables equating its variation
to zero is equivalent to (1.2). In any case, for the harmonic oscillator one obtains
the following equations

˙[q
p

]
=

[
p
−q

]
.

What is important here is that L is a function of only q, really; whereas H
is a function of (q, p). The equations of motion are obtained in both cases by
variating the corresponding action functional.



2 RELATION TO OPTIMAL CONTROL 3

2 Relation to optimal control
Thinking about the pendulum, we can imagine that nature actively decides how
to move it. In the equation of motion

q̈ = −q, (2.1)

we can imagine that the right-hand side is a forcing function that nature applies
to the point mass to move it. How does nature decide? Perhaps, first we should
determine what “decide” means in this context. Nature decides what terms to
put into the Hamiltonian because this in turn determines the evolution of the
system. Indeed, consider the hamiltonian

H(q, p) =
p2

2
+

∫ q

0

u(x)dx. (2.2)

The equation of motion derived from it is the forced double integrator

q̈ = −u(q).

So, for the pendulum, nature choses u(q) = q. However, in general (2.2) de-
scribes any dynamical system consisting of a particle acted upon by a conser-
vative force.

Ok, we figure out that “decision” in this context refers to the choice of the
Hamiltonian (or to the choice of the forcing function in the right-hand side of
(2.1)). How does nature decide what forcing function to apply? This question
cannot be answered based on any principle of mechanics because the forcing
function is given by the gradient of a potential field (in this case gravitational
field). Nevertheless, if we imagine ourselves having control over what the field
should be, we can impose any forcing function we like. What would the criteria
be? Perhaps, we would base our choice on the resulting trajectory q(t). If we
assume that we can only set the system parameters once in the beginning of an
experiment and then observe a trajectory q(t), then it makes sense to describe
what we want from the trajectory somehow, maybe in terms of an objective
function. If we succeed in describing the “goal” of our game in terms of an
objective function, we can formalize the search as an optimization problem.

3 General remarks on the RL problem formula-
tion

The standard problem formulation in RL seems to be unsatisfactory in several
regards.

1. Agent should be considered part of the world. Conventionally, one thinks
of an agent as an immaterial being that controls something in the world.
At best, it is an Atari player that pushes some buttons behind the scenes.
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It is better to think of the agent and the world as one joint system, dynam-
ics of which the agent can modulate. It is even better to just imagine a
single composite dynamical system with some tunable parameter exposed.
The game is then to pick the parameters that drive the system to a desired
state.

2. Goal ̸= cost function. First, reward being external to the agent does not
make sense at all. Reward should be computed internally by the agent.
Reward (or cost function) by itself is just a proxy that helps in shaping
the system dynamics to achieve a goal. More concretely, it seems to be
unrelated to both the real world and to engineering disciplines to assume
zero reward everywhere and one scalar value at the end of an episode. The
agent should have access to the mechanism that computes the reward.
Truly, we have no idea of how one picks a goal. However, for a machine,
we can safely assume that a goal is given. Then the question is merely
how to achieve it. In this view, the agent could shape the reward if it is
beneficial for achieving the goal. The cost function in some sense acts as
a potential. Thus, we are shaping the system dynamics using potentials.

Taking these points into account, one can identify two main challenges that need
to be solved to enable task completion.

1. Develop cost functions consistent with the goal. To be more precise, if
we assume that the agent changes system parameters at a low frequency,
thus exploiting as much as possible natural dynamics of the world, then it
can adjust the cost function between every parameter change. This makes
sense if optimization of the cost with respect to parameters is fast. Then
the main tunable parameter is the cost function.

2. In the whole discussion above, we silently assumed that system dynamics
is known to the agent. However, this is not so. And this is, actually, the
only reason why we need real world at all (given that goals are provided;
otherwise, real world experiences could trigger goals). We need real world
to test hypotheses. All the reward shaping and optimization can be done
in simulation. (I discern between simulation, virtual environment, and
real world. Simulation refers to using analytic models such as ẋ = f(x; θ).
This can be called internal rehearsal or imagination. Virtual environment
and real world can be used interchangeably and they refer to the ground
truth about the system dynamics. If the agent is supposed to live in
a virtual environment such as Facebook, for example, then it is its real
world.)

To conclude, one needs to have an algorithm that takes a goal as input. Based on
the goal, a sequence of cost functions should be generated. If system dynamics
is not known a priori, it must be estimated from experience in the real world.
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4 Bandit problem as dynamics estimation
Bandit problem is usually formulated as if there were no dynamics involved.
However, the cumulative reward is nothing else but the state of the system. As
well as the number of times each arm was played and what payoff was observed.
All these data are part of the system state. Decision as to what arm to play can
be considered as state feedback. The goal may be to maximize the cumulative
return. As before, goal is not equal to reward function. Reward function may
include exploration bonus and such kind of things, but the goal is still return
maximization. Why do bandits do exploration? To estimate the dynamics. The
dynamics tells the agent what reward to expect from each arm.

Maybe a sequence of arms gives a better return? More concretely, arms may
be non-commutative. For example, showing some ads may not work on its own,
but then showing another ad afterwards may bring better result. Imagine seeing
an ad of a subscription to FT for $100 every day for a week, and then suddenly
it is just $10. Of course, you are more inclined to buy. This is the dynamics
behind reward generation. If the bandit agent only observes the reward, it is
hard for her to tell what led to such outcome. However, it can figure out the
dynamics that leads to good returns from playing arms.
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