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Motivation
There are two seemingly contradictory theories of ball interception:

• humans predict the ball trajectory to optimally plan future actions,

• humans employ heuristics to reactively choose actions based on visual feedback.

We show that interception strategies appearing to be heuristics can be understood as com-
putational solutions to the optimal control problem faced by a ball-catching agent acting
under uncertainty.

Catching heuristics

Figure 1: Prominent catching heuris-
tics in one figure.

A number of heuristics have been proposed to explain
how humans catch balls. Figure 1 shows four well-
supported by experiments heuristics: optic acceler-
ation cancellation (OAC), constant bearing angle
(CBA), generalized optic acceleration cancellation
(GOAC), and linear optical trajectory (LOT). OAC
and CBA together form Chapman’s theory.

In Figure 1, the ball B follows a parabolic trajectory
B0:N while the agent C follows C0:N to intercept it.
Angle α is the elevation angle; angle γ is the bearing
angle with respect to direction C0B0 (or C2G2, which
is parallel). Due to delayed reaction, the agent starts
running when the ball is already in the air.

The heuristics can be formulated as follows:
d tanα/dt = const OAC
γ= const CBA
δ ≈ γ GOAC
tanα/ tanβ = const LOT

Ball catching as optimal control under uncertainty
System dynamics:

x k+1 = f (x k, uk) + εk+1, εk ∼N (0,Q),
zk = h(x k) +δk, δk ∼N (0,R(x k)).

Belief state is approximated by the normal distribution, bk = (µk,Σk). Future observa-
tions are assumed to coincide with their most likely values, zk = h(µk), for the purpose of
planning. Under these assumptions, the extended Kalman filter (EKF) equations result in
determenistic belief dynamics

µk = f (µk−1, uk−1),

Σk = (I − K kC k)Σ̄k.
At every time step, the agent solves a constrained nonlinear optimization problem

min
u0:N−1

J(µ0:N ,Σ0:N ; u0:N−1)
s.t. uk ∈ Ufeasible, k = 0 . . . N − 1,

µk ∈ Xfeasible, k = 0 . . . N ,

to obtain an optimal sequence of controls u0:N−1 minimizing the objective function J .

Detailed model of the catching agent for belief-space optimal control

Figure 2: Catcher C applies force F to
move in x y -plane. Unit vector d, pa-
rameterized by angles φ and ψ, speci-
fies the gaze direction. The catcher con-
trols the module of the force F along
with the direction of its application θ ,
and angular velocitiesωφ andωψ.

Several model components are essential to faithfully
describe catching behavior:

• damped dynamics r̈ c = F −λṙ c,

• direction-dependent magnitude of the maximal
applicable force |Fmax(θ )|= F1+ F2 cosθ ,

• state-dependent observation uncertainty
σ2

o = s(σ2
max(1− cosΩ) +σ2

min).
The catching agent trades-off success with effort

J = w0‖µb −µc‖2
2 [final position]

+ w1 trΣN [final uncertainty]

+ τw2

∑N−1
k=0 trΣk [running uncertainty]

+ τ
∑N−1

k=0 uT
k Muk [total energy].

Simulated experiments and results
Continuous tracking of an outfielder—heuristics hold

0 5 10 15 20 25 30 35
Distance x [m]

0

2

4

6

8

10

D
is

ta
nc

e
y

[m
]

Catcher’s trajectory
Catcher’s gaze
Ball trajectory
Observed ball trajectory
Belief trajectory, mean
Belief trajectory, covariance

Figure 3: A typical trajectory of a successful catch.

In Figure 3, the agent starts
sufficiently close to the intercep-
tion point to continuously visually
track the ball, therefore he is able
to efficiently reduce uncertainty
and intercept the ball while keep-
ing it in sight. Note that the agent
does not follow a straight trajec-
tory but a curved one, in agree-
ment with human experiments.
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Figure 4: Heuristics for the successful catch.

Figure 4 shows that resulting
from our optimal control for-
mulation policies always fulfill
the heuristics (OAC, CBA, GOAC,
and LOT) with approximately the
same precision as in the original
human experiments:

• tanα grows linearly (OAC),

• γ remains constant (CBA),

• δ oscillates around γ (GOAC),

• tanβ∝ tanα (LOT).

Thus, in this well-studied case,
the model produces an opti-
mal policy that exhibits behavior
which is fully in accordance with
the heuristics.

Interrupted tracking during long passes—heuristics break but prediction is required
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Figure 5: Catch that violates heuristics.
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Figure 6: Heuristics do not hold.

An interception plan that leads to suc-
cessful catch despite violating heuristics is
shown in Figure 5. The agent would not be
able to reach the interception point in time
while running backwards and, thus, has to
turn forward to run faster.

As seen from Figure 6, the heuristics fail to explain this catch—even during the final
stage of the catch when the agent is continuously tracking the ball. OAC deviates from
linearity, CBA is not constant, the tracking heuristic wildly deviates from the prediction,
and LOT is highly non-linear.

Switching behaviors when uncertainty and reaction time are varied

Figure 7: Switches between reactive and feedforward policies
are determined by uncertainities and latency.

When reaction delays are
long and predictions are re-
liable, the agent turns to-
wards the interception points
and runs as fast as he can
(purely predictive strategies;
lower right corner in Fig-
ure 7). When predictions are
not sufficiently trustworthy,
the agent has to switch multi-
ple times between a reactive
policy to gather information
and a predictive feedforward
strategy to successfully fulfill
the task (upper left corner).
When reaction time and sys-
tem noise become sufficiently

large, the agent fails to intercept the ball (upper right grayed out area). Thus, seemingly
substantially different behaviors can be explained by means of a single model.
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